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The present paper deals with longitudinal displacement of mass between
rough non-circular cylinders. A method is developed which permits a re-
duction of solution for various problems with non-linear law of deform-
ation of a certain form to a solution of the same problems employing
linear law. The longitudinal displacement between cylinders is considered
when contours of cross-sections are confocal ellipses.

1. Fundamental relationships. Let us investigate the longitudinal
displacement of a plastic mass between rough cylinders. Assume that the
inner cylinder is displaced by an amount @ in the negative direction of
the z-axis and the outer cylinder remains stationary.

Obviously, the components of displacement u = v = 0, and the stress
and strain components will be

Oy = Oy = G, =0, Tay=20, By = 8y = 8, = Yy = 0.

The remaining stress components r s =T Ty =Ty and strain compo-
nents y ,_ =y, Yyz =Yy and also the displacement components w, do not
depend upon z. They are” functions of x, y only.

For this condition the differential equations of equilibrium are
particularly simple. They are reduced to a single equation

6Tu
+50 =0 (1.1)

o,

oz

The strain components y_ and Y, are expressed in terms of v in the
following manner

Jw F.)
2 =5-, 2%y = 5, (1.2)

The fundamental relationships between stress and strain components
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have the usual form

i

d|-—z

Ty 1.3

Y
Te= = Tx» Ty
vhile
2 == TxQ + 71‘2, — ,.rxz + .ryz
The condition of plasticity is determined in a certain form of re-
lationships between 7 and y, namely
T=1(1), or T=1() (1.4)

On the basis of (1.1), the stress components r and 7, may be expressed
as a function of ¢y as follows

o9 = (1.5)

T gy WE T

and following (1.2) the strain components y, and Y y may be represented as
a function of ¢

a9 a
bt =5, 2k =3, e=k@+W) (1.6)
where k is a mechanical constant which will be introduced later.

Fundamental relationships (1.3), together with (1.5) and (1.6), pro-
vide a system of equations

9 o517 de Y 0y .
a—x—2k;—tx, 5&—2k‘;?y, 5;————'[”, -a—g—':x_ (1.7)

Now examine the conditions existing along the contours of the bound-
ing cylinders. Consider that adhesion exists along these contours. Then,
obviously, on the contour of the inner movable cylinde { there will be

w=—W, or ¢=0
and on the contour of the outer stationary cylinder there will be

w=0, or o = kW

Now let us calculate the friction force Q which acts on the inner
cylinder from the side of the plastic mass.

Since the component r , which acts along the contour of the cross-
section of the inner cylinder, appears in the fomm

d
T, = Ty €08 (1, Z) + 1y cos (n, y) = tx—a%——ry‘g — %ii

it follows that the friction force per unit length of the cylinder is

equal to

Q= @tnds = (S)d(f) (1.8)
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System of equation (1.7) becomes simplest when r and y are connected
by linear relationships

T = 2",‘1', or 'T = ;—k (1.9)

which determine the usual elastic state and contain a single mechanical
constant k.

As will be shown later, the system of equations (1.7) also can be
reduced to quite a convenient form when 7 and y are nonlinearly related
T = 2k or Y= T2k
Vi @my?’ Vi—mk)

describing a plastic state with hardening and containing two mechanical
constants k and m.

(1.10)

Notice that if w is assumed to be a longitudinal velocity and y  and y
are assumed to indicate strain rates, then the derived equations describe
the longitudinal flow of plastic mass between rough cylinders. Naturally,
in such a case, the mechanical constants k and m and also W assume new
dimensions.

2. Transformation of equations. Now consider the system of basic
equations

de T, 09 Ty Y ay

A S— —=t . — =, — =1, (2.1)
dx V1— (mt/k)? dy V11— (m7/k)? oz dy

which corresponds to system (1.7), given previously.

Express 7 and r in terms of the modulus 7 of the shear stress vector
and the angle of inclination 6 of this vector to the x-axis, such that

T =1 cos 0, 1, =t sin 0 (2.2)
Transform system of equations (2.1) as follows
9 T cos 6 99 _ T 8in 0
o VI—(mr/k)? dy  Vi—(mr/k) (2.3)
%z—tsine, %=tcose
and introduce a new quantity t by means of equalities
{ = 2t = -
1+ VI— (mrkp 1+ (mt/2k)? O<E<2km) - (2.4)

For convenience we will use dimensionless quantities

A ‘.9 re Y
- P ¢ = w7
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and also

it . It '

C=mr T T

where ! is some characteristic length.

For brevity let us agree to omit the primes. That is, let us denote
the dimensionless quantities by the same symbols as the dimensional
quantities.

Substituting t for r, and passing over to dimensionless quantities,
let us rewrite the system of equations (2.3) in the following form

dp  tcos® 6<p tsin @
Fo 4 — it 1T
xr  1—pi T —pk (2.5)
ay  tsinb @ __ tcos B
T or T T4 e 8y 1 p¥uT
and the equalities (2.4) as
{ = 27 — t 26
1+ VT—(@2pr)? 1 4 p2e? (2.6)

Note that for p = 0 equations (2.5) will reduce the usual equations
valid for a linear law (1.9), and equalities (2.6) indicate that t =

Let us perform a substitution of variables using the transformation
formulas

6<p iay s 1oz ¥ tay oy _ 1o
3 Aap’ By A3y’ dx  Ade' By Ao

assuming ¢ and i to be the independent variables, and x and y to be the
sought functions,

Finally, system of equations (2.5) will be transformed into the system

— 122 S22
b _ 1wt o cn, W1z,
dp t do t (2.7
dr 14 pi® 9y 1 -+ p’t’
—@ = sin 8, G = cos 6

and the determinant of the transformation A will be

__O0zdy dx oy 1
A=Geop —apap—m M (28)

Let us introduce complex quantities

t=z4iy, o=¢+ip, T=In} -+
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and the corresponding conjugate quantities which will be identified by
dashes.

Multiplying the second and the fourth equations of system (2.7) by i
and then adding them to the first and the third equations respectively,
we obtain

gf_:i—pw az =i1+p2126i0
d¢ t ? Y t

(2.9)

Substitution of quantities w, w for ¢ and ¢/ and substitution of T, T
for t and 8 will result in

%2 _ 02

Tomel, L=y (2.10)
From this it immediately follows that
dz = eTdo — ple—Tdw, :;T =22 T 2.11)
® dw

Since the complex quantities 4T /9@ and 3T /dw are conjugate, and
since the variable quantity pt is real and varies within the limits
0 put< 1, then dT /0% = 0. Therefore, the complex quantity T is an
arbitrary analytic function of the complex variable @ only, namely,
i8
'37 =T, T =T (o) 2.12)
Note that for the linear law (1.9), or for g = 0, equations (2.11)
will be of the form

dz = eTdw (2.13)
and equations (2.12) become

A T =T () (2.14)

Along with the complex variable z, it is convenient to introduce an
auxiliary complex variable { as follows:
L =L (w), df = eTdow
Whereby, in performing this, the stress field in the z-plane will

correspond to a certain auxiliary stress field in the {-plane which occurs
for the linear law (1.9).

It is easy to observe that equation (2.11) can be transformed to the
form

= z‘.f“;_ o d 2 ‘i@ ad” 2
dz = - do—pu d&—dw= L—pw ar G (2.19)
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and equation (2.12) can be rewritten as
e _dt (2.16)
t dw h
The above equations provide an opportunity to find a solution of the
present problem of a longitudinal displacement of a plastic mass between

rough cylinders, when a solution of the same problem for the linear law
(1.9) 1s known.

In fact, knowing the function { = {(w), it is not difficult by way of
integration of equations (2.15) to find the function

z=z(w, )

The region in the z-plane, which is occupied by a plastic mass between
the curvilinear contours, will have the same form as the region in the
{-plane. However, the forms of curvilinear contours which bound the in-
dicated regions will differ somewhat. The diameters of these contours are
determined by the parameters which enter into the solution, and which may
be assigned previously.

3. Confocal ellipses. Consider for example a field of shear
stresses and longitudinal displacements when the inner and outer contours
of the cross-sections of the cylinders are confocal ellipses:

x2 y2 " 22 y2 2

chza ' sha = ' h®8 U sh?p
shown in Fig. L

Again as before, let us employ dimensionles$ quantities, taking as
the characteristic length ! the distance between the center O and the
focus L,

First consider the linear law (1.9). That is, assume that the parameter
p = 0. The solution of the formulated problem is expressed by a function

z = ¢h Q, Q=B—a)o+t+a
Determining the derivative dz/dw= ( 8 - a ) sh @, we obtain
oi0
=@ a) sh

Now assume the nonlinear law (1.10), that is, assume the parameter
p £ 0. The solution of the problem is then given by the function

{=cchQ) Q=(—a)yo-ta

which contains arbitrary parameters @, b and c.



Displacement of plastic mass between non-circular cylinders 1049

Eugations (2.15) after introduction of {, can be transformed into the
following form without much effort

dz=cshQdQ— -+ 4 g @ _db

c(b—a)?sh Q (b—a)2g2—*

Integrating these equations and making a final selection of arbitrary
constants, we find

2 i 2 ¢
z=cchQ BT tanhl - — o B _gannis 3.1
+c(b—a)2 b8 T ch—ay 3 ¢1)

As a result of substitution of £, equation (2.16) can be rewritten as
i

- =c(b—a)shQ (3.2)

In equations (3.1) and (3.2) let us separate the real and imaginary
parts. For convenience introduce the notations

O=(b—a)p--a, Y= (b-—a)}

Coordinates x and y are determined as functions of ® and ¥ the fom

x Loowr g eosY ¥y

= =ch®cos¥ + 3 = tanh™ —= X S—

y o N 1wt -y sin¥

“=sh@sin¥t - BTt h o (3.3)

co . 4,

and quantities t and § are again expressed as ‘

. L ‘I.
functions of ® and ¥ as Sy oy R
t _ BED  costF _tg¥ Fig. 1.
— = c(b—a)V ch®* ® —cos™¥, tgh=25 (3.4

Lines of equal displacements and lines of action of shear stresses in
the xy-plane may be constructed on the basis of (3.3) by assuming ® =
const and ¥ = const respectively.

The contour of the moving inner cylinder is the line along which ¢= 0,
The coordinates x and y for this contour, as well as quantities t and 0,
can be obtained from (3.3} and (3.4) for = 0 or B = a.

Equations for the inner contour are determined in the following manner

L o u? ..ycos ¥
— = chacost' - (b-a)2tan-h 2
(3.9)
y s p? ~1 sin'¥
-E-Mshasm\l T AB—a) tan “ha

and quantities t and § along this inner contour will be

% =c¢(b—a) 1/(:h2 a — cos?¥, tg b= tfh\i (3.6)
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The contour of the outer stationary cylinder is the line along which
¢ = 1. The coordinates x and y for this contour, as well as quantities t

1]

and @, may be obtained from (3.3) and (3.4) for &= lor &= b.

Equations for the outer contour are expressed as

—f— = chbcos ¥ -+ Cg—w"::_—;?—t'anh“_i ng‘:'
(3.7)
—Z“—;- =shbsint’ + = (gysi 2 tang SSI;::
and quantities t and 6 along this outer contour will be
L c(b—a)V BT — cos T, 1g6 =82 (3.8)

The friction force Q) per unit length of the cylinder is easily found
from (1.8). Since ¥ acquires an increment of 27 when integrated along

the inner contour, then

§ dF =27 and Q=270

—a

In these solutions the parameters @, b and c¢ are related to each other
by the two equations
, n? -1 1 cha pE _1_1__shfz
Ch“‘*"‘"’—cub_a)rtanh il sha + TE—ar tan” oo = — (3.9)
which follow from equations (3.5) and from requirements that the inner
contour should pass through points x = cha, y= 0 and x = 0, y = sha.

Besides this, parameters a, b and ¢ are connected by two more equations

n? -1 1 ch3 w2 -1 1 sh3
RS — —— : . t . Sho
Ch b e (b _ Q)Ztanh hb PR Sh b + “‘cg"(b'_"—"—ﬁ (1)2 an py ~ (3.10)

which follow from equations (3.7) and from requirements that the inner
contour should pass through points x = ch 3, y =0 and x = 0, y = sh .

Three parameters a, b and ¢ are determined from three equations of
system (3.9) and (3.10), while the fourth equation is not satisfied. In
this way the outer and inner contours are symmetrical about axes x and y.
They pass only through assigned points 4, A, and B, while the fourth

point B, remains aside.

It is especially interesting to find out the variation of shear stress
along z and y axes. From (3.3) and (3.4) for W= 0 the coordinate x and
the quantity t along the x-axis will be determined as follows

1

2 - 1
%zchcp+c_z_(_g*i'm tanh™! ., s =c(b—a)sh®@ (3.11)
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and the coordinate y and the quantity ¢t along the y-axis are found from
(3.3) and (3.4) for ¥ = 1/27 and will bLe

T =c(b—a)ch® (3.12)

%=¢m+ tan

w 1
c?(b—a)? sh®’

One should bear in mind that the longitudinal displacement w is ex-
pressed in terms of ® in the simple form
b—@
b—u

Note, that within the considered region of ® and ¥ variation, that is,
for a< D b, 0 ¥ 27, the determinant of transformation A must be
different from zero. Otherwise ® and ¥ will not be single-valued functions

of x and y. Since the determinant 1is

W= —

1 o 1
A:t—z——‘x4t~>0, or —t—>p.
then from (3.3) it follows that
c(b—a)} ch®>® — cost¥ > u

This condition will be satisfied if parameters a, b and ¢ are
subjected to the following limitation

Notice that for g = 0, equations (3.9) and (3.10) will give
a=a, b=§ c=1
Let us carry out a numerical example for
p=02  a=04 B=1.0

which would illustrate the preceding discussion. Parameters a, b and ¢
are obtained from solution of equations (3.9) and (3.10). They are equal
to

a=0.347, b=1.105 ¢ = 0.889 .

The coordinates x and y for points of inner contour are determined
from (3.5), and the corresponding values of t and r at these points are
found from (3.6). In this manner

¥ = 0.000 0.314 0.628 0.942 1.257 1.571
z=1.081 1.011 0.841 0.603 0.315 0.000
y = 0.000 0.153 0.265 0.345 0.394 0.411
t =419 3.159 2.163 1.680 1.462 1.399
T =2.462 2.258 1.822 1.510 1.347 1.297

The coordinates x and y for points of outer contour are determined
from (3.7) and the corresponding values of t and r are found from (3.8).
Hence,
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¥ = 0.000 0.314  0.628 0.942 1.257 1.571
r==1.543 1.467 1.246  0.904  0.475 0.000
y 0,000  0.387 0.734 1.009 1.184 1.245
t==1.,104 1.076 1.012 0.946 0.901 0.886
=== 1.033 1.028  0.972 0.913 0.873  0.859

These results make it possible to conjecture the contour forms for
cross-sections of bounding cylinders and the character of variation in

shear stress r along inner and outer contours.

valiss 5 ourves 1 [ 8

The values of ¢, r and w along the x-axis are determined from (3.11).
Their final values are equal to

O = 0.347 0.498 0,650 0.801 0.953 1.105
7z ==1.081 1.112 1.174 1.266 1.388 1.543
t== 4194 2.858 2480 1.667 1.344 1.104
<52 2,462 2,134 1.803 1.500 1.253 1.033
= 1,000 0,800 0.600 0.400 0.200 0.000

Analogous values of ¢, r and w, however, along the y-axis are found
from (3.12). They are equal to

M= 0.347 (. 498 0.630 0.801 1.953 1.105

¥ =0.411 0.547 0.695 0.857 1.039 1.245

t=1.399 1.317 1.217 1.108 (.996 0.886

= =1.297 1.231 1.149 1.056 0.958 (.859
0.

— = 1.000 800 0.660 0.400 0.200 0.000

These results indicate the character of variation of shear stress r
and longitudinal displacement w along x- and y-axes.

Contours of cross-sections for bounding cylinders are shown in Fig.2.
In the same figure, by dotted lines, are also shown

¥

N A VR TR T BT R AR VT
Fig, 2.

contours of cross-sections for p = 0 which are confocal ellipses. In the
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same figure is drawn the lattice ® = constant and W = constant, which are
constructed for various values of ® (from 0.347 to 1.105) for equal in-
tervals of 0.152 and for various values of ¥ (from 0.000 to 1.571), also
for equal intervals of 0.314,

In conclusion we note that the technique presented here makes it
possible to investigate also other problems of longitudinal Adisplacement
of plastic mass between non-circular cylinders.

Translated by V.A.V.



