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The present paper deals with longitudinal displacement of mass between 

rough non-circular cylinders. A method is developed which permits a re- 

duction of solution for various problems with non-linear law of deform- 

ation of a certain form to a solution of the same problems employing 

linear law. The longitudinal displacement between cylinders is considered 

when contours of cross-sections are confocal ellipses. 

1. Fundamental relationships. Let us investigate the longitudinal 

displacement of a plastic mass between rough cylinders. Assume that the 

innercylinder is displaced by an amount o in the negative direction of 

the z-axis and the outer cylinder remains stationary. 

Obviously, the components of displacement u = v = 0, and the stress 
and strain components will be 

ox = 0” = Qz = 00, TX. - - 0, E,=Etl=E,=Trll= 0. 

lhe remaining stress components r zx = r x, T yx=ry and strain compo- 

nentsy,,=yz,y =Y, and also the displacement components I, do not 
depend upon z. lh& areYfunctions of x, y only. 

For this condition the differential equations of equilibrium are 

particularly simple. ‘Ihey are reduced to a single equation 

lhe strain canponents y, and y, are expressed in 
following manner 

The fundanental relationships between stress and 
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(1-l) 

terms of 10 in the 

(1.2) 

strain components 



1044 

have the usual form 
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while 

12 = I ‘X2 + ::y2, r2 = 7X2 + 7vz 

l’he condition of plasticity is determined in a certain form of re- 
lationships between r and y, namely 

t = T(7), or 7 = 7 (7) (J.4) 

ch the basis of f 1.11, the stress ccmponents r x and T y may be expressed 

as a function of II, as follows 

(I.51 

and following (1.2) the strain components y, and y, may be represented as 

a function of Q, 

2ky, = 2, 2k7,=$, y=k(w+W) (1.6) 

where k is a mechanical constant which will be introduced later. 

Fundamental relationships (1.31, together with (1.5) and (1.61, pro- 
vide a system of equations 

2=2k$.., 2 = 2k 3 z,,, 2 = --TV, ‘4 = 5, (1.7) 

Now examine the conditions existing along the contours of the bound- 

ing cylinders. Consider that adhesion exists along these contours. Then, 

obviously, on the contour of the inner movable cylinder f there will be 

w=-w, or q3=0 

and on the contour of the outer stationary cylinder there will be 

w = 0, or rp=kW 

Now let us calculate the friction force Q which acts on the inner 
cylinder from the side of the plastic mass. 

Since the component 7 n, which acts along the contour of the cross- 

section of the inner cylrnder, appears in the form 

it follows that the friction force per unit length of the cylinder is 

equal to 

Q= $T,ds =#d+ G.8) 
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System of equation (1.7) becomes simplest when r and y are connected 
by linear relationships 

‘t= 2ky, or r=& (1.9) 

which determine the usual elastic state and contain a single mechanical 
constant k. 

As will be shown later, the system of equations (1.7) also can be 

reduced to quite a convenient form when r and y are nonlinearly rebated 

(1.10) 

describing a plastic state with hardening and containing two mechanical 

constants k and m. 

Notice that if w is assumed to be a longitudinal velocity and yz and y, 

are assumed to indicate strain rates, then the derived equations describe 

the longitudinal flow of plastic mass between rough cylinders. Naturally, 

in such a case, the mechanical constants k and no and also W assume new 

dimensions. 

2. Transformation of equations. Now consider the system of basic 
equations 

a9 a9 a+ a+ -_= 
ax 1/l :;mT,k)z ’ ay = VI _T;mr,k)a , a, = -*l/r ay = % (2-l) 

which corresponds to system (1.7), given previously. 

Ejcp ress rx and r in terms of the modulus r of the shear stress vector 
and the angle of inzlination 8 of this vector to the x-axis, such that 

TX = ? cos 8, ~~ = ‘c sin 8 

Transform system of equations (2.1) as follows 

a9 T co9 e 

a, = 1/f - (W/k)” 

a+ -=- 
ax T sin 6, w 

ay= T case 
and introduce a new quantity t by means of equalities 

2T t 
t= 

1 + 1/l - (mT/k)z ’ 
T’= 

1 + (mt/2k)2 (0 < t f 2k/m) 

(2.2) 

(2.3) 

(2.4) 

For convenience we will use dimensionless quantities 
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and also 

it 
t’=jp, 

17 
b=@p-, @f = Ifi_ ?TlW 

W' p=-yij- 

where 1 is some characteristic length. 

For brevity let us agree to omit the primes, That is, let us denote 
the dimensionless quantities by the same symbols as the dimensional 
quantities. 

Substituting t for r ) and passing over to dimensionless quantities, 
let us rewrite the system of equations (2.3) in the following form 

a? t co9 6 a9 t sin e 
zi =1-_it8’2 -- a&j - 1 - pat= 

a* t sin 8 a+ t cos e 
-- 

i3X =1-+llet2* G= 1 +- pv 

(2.5) 

and the equalities (2.4) as 
2r t 

tz 
1 + 7/l - @i*T)~ ’ 

~EZZ------- 
t + pw (2.6) 

Note that for p = 0 equations (2.5) will reduce the usual equations 

valid for a linear law (l.o), and equalities (2.6) indicate that t = r. 

Let us perform a substitution of variables using the transformation 

formulas 

assuming 4 and t) to be the independent variables, and x and y to be the 
sought functions. 

I%nally, system of equations (2.5) will be transformed into the system 

ax 1 - p2t2 aY I- pt2 --_- 
$9 t cos 8, a(p-- t --------sine, 

C?X 
-- ' + tL2ta sin0 

ag = ____ t 
f 

$! =_.-____ 1 -t p2ta cos fj 

t 

and the determinant of the tr~sfor~tion A will be 

Let us introduce cmlex quantities 

(2.7) 

Gw 

z = x + iy, 0 = Q! + i+, T 2: In f -F_ i9 
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and the corresponding conjugate quantities which will be identified by 

dashes. 

Multiplying the second and the fourth equations of system (2.7) by i 
and then adding them to the first and the third equations respectively, 

we obtain 

ars t - 

Substitution of quantities 10, 

for t and 6 will result in 

'12 T -=e ( 
&II 

w for qb and 19 and substitution of T, ?; 

az 

% 
=---se-F (2.10) 

From this it inrnediately follows that 

Since the complex quantities d7'/8~ and ~3~/~3o are conjugate, and 

since the variable quantity pt is real and varies within the limits 

0 < pt < 1, then dT/da = 0. 'Therefore, the complex quantity T is an 
arbitrary analytic function of the complex variable o only, namely, 

.ie 
T -=e, 

t 
T == T (w) (2.12) 

Note that for the linear law (1.9), or for p = 0, equations (2.11) 

will be of the form 

dz = eTdo (2.13) 

and equations (2.12) become 

Along with the 

auxiliary complex 

,i9 
T --=e ( 

T 
T = T(o) (2.14) 

complex variable z, it is convenient to introduce an 

variable c as follows: 

r; = r;(o), dC = eTdo 

Whereby, in performing this, the stress field in the r-plane will 

correspond to a certain auxiliary stress field in the c-plane which occurs 

for the linear law (1.9). 

It is easy to observe that equation (2.11) can be transformed to the 

form 

(2.15) 
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and equation (2.12) can be rewritten as 

,ie a 
- = i&i t 

<Z.l6) 

'Ihe above equations provide an opportunity to find a solution of the 

present problem of a longitudinal displacement of a plastic mass between 

rough cylinders, when a solution of the same problem 

(1.9) is known. 

for the linear law 

In fact, knowing the function 4 = z(o), it is not 

integration of equations (2.15) to find the function 

z=z(o, (;; 

difficult by way of 

The region in the z-plane, which is occupied by a 

the curvilinear contours, will have the same form as 

plastic mass between 

the region in the 

c-plane. However, the forms of curvilinear contours which bound the in- 

dicated regions will differ somewhat. The diameters of these contours are 

determined by the parameters which enter into the solution, and which may 

be assigned previously. 

3, Confocal ellipses. Consider for exmple a field of shear 

stresses and longitudinal displacements when the inner and outer contours 

of the cross-sections of the cylinders are confocal ellipses: 

shown in Fig. 1. 

Again as before, let us enploy dimensionless quantities, taking as 

the characteristic length 1 the distance between the center 0 and the 

focus t, 

First consider the linear law (1.9). That is, assume that the parameter 

I'= 0. Ihe solution of the formulated problem is expressed by a function 

z = ch 52, n==(fi--01)6_+a 

~te~ining the derivative &/do= ( /I - a f sh 52, we obtain 

5 = @---a)sh 52 
Now assume the nonlinear law (l.lO), that is, assume the parameter 

p f 0. The solution of the problem is then given by the function 

C=cchSZ,j SL=(b--u)w+a 

which contains arbitrary parameters Q, b and c. 
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Euqations (2.15) after introduction of 6, can be transformed into the 

following form without much effort 

dz = c sh LR d Sz - -e.-.-___=d~-‘*2- ra 
d5 d;: 

c (b - al2 sh R (b - a)2 ‘52 - (2 

Integrating these equations and making a final selection of arbitrary 

constants, we find 

z=cchi2+‘*Z i tam-l-= = c -+. -...-L tanh-l~ 
c (b - cl)2 ch Cl c lb - a)” t; 

(3.1) 

As a result of substitution of 6, equation (2.16) can be rewritten as 

,i% 
- =c(b--ua)shc2 

t (3.2) 

In equations (3.1) and (3.2) let us separate the real and imaginary 

parts. For convenience introduce the notations 

cD=(b--a)y'-a, Y = (I!+-u)cC, 

&ordinates x and y are determined as functions of m and U'~in the form 

X 2 

--czz 
-1 yg 

C 
cha,cosY f &+.anh 

chQ, 

Y 
" 

---I= 
C 

sh@sinY ;- '*' 
c2 (b - a)2 

tan-ls~ 

and quantities t and i3 are again expressed 
functions of @ and Ut as 

(3.3) 

as 

1 
-= 
t 

c(b- a)~chQD - cos?k", tgfl=$& (3.4) 
Fig. 1. 

Lines of equal displacements and lines of action of shear stresses in 

the zy-plane may be constructed on the basis of (3.3) by assuming a= 

const and Y = const respectively. 

The contour of the moving inner cylinder is the line along which $= 0. 

The coordinates x and y for this contour, as well as quantities t and 0, 

can be obtained from (3.3) and (3.4) for += 0 ore= a. 

Equations for the inner contour are determined in the following manner 

x 
-zz ,.hacos~~ _, r2 tanh-1COS 
C cZ(b--a)2 * ch a 

Y shnsiuY 7- P2 -zzz 
tan_1 sinY 

C c2 (b - a)2 sh a 

(3.5j 

and quantities t and 8 along this inner contour will be 

1 -= 
t 

c(b--a)~ch%--coszY, tge= g (3.6) 
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'Ihe contour of the outer stationary cylinder is the line along which 

$, = 1. Ihe coordinates x and y for this contour, as well as quantities t 

and 8, may be obtained from (3.3) and (3.4) for $5 = lor a,= b. 

Equations for the outer contour are expressed as 

and quantities t and 0 along this outer contour will be 

1 _ = e(b-ua)f/ch2b- COS~Y', 
t 

t&3=-~ 

(3.7) 

(3.8) 

'Ihe friction'force Q per unit length of the cylinder is easily found 

from (1.8). Since Y acquires an increment of 2n when integrated along 

the inner contour, then 

d’F=22;: 
f 

and Q=Z:g 

In these solutions the parameters a, b and c are related to each other 

by the two equations 

chaj 
12% 

c2(b-u)2’ 
tanh-1 -& = ‘$, sha + &F tar+& = 'y (3.9) 

which follow from equations (3.5) and from requirements that the inner 

contour should pass through points x = ch a, y = 0 and x = 0, y = sh a. 

Besides this, parameters a, b and c are connected by two more equations 

chbm+ 
(12 rh3 tanh-l&b = --f- ) shb+ " 

L’) (b -- np 
tan-l 1 

ct (b -- up a= s$! (3.10) 

which follow from equations (3.7) and from requirements that the inner 

contour should pass through points x = ch (3, y z 0 and x = 0, y = sh p. 

Three parameters a, b and c are determined from three equations of 

system (3.9) and (3.101, while the fourth equation is not satisfied. In 

this way the outer and inner contours are synrnetrical about axes z and y. 

They pass only through assigned points A,, A, and R,, while the fourth 

point B, remains aside. 

It is especially interesting to find out the variation of shear stress 

along 1: and y axes. From (3.3) and (3.4) for Y= 0 the coordinate x and _ 
the quantity t along the x-axis will be determined as follows 

-=&Q+ EL’ z tanh-l $@, 
1 
t= c(b-u)sh@ 

C c2 (b - a)2 
(3.11) 
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and the coordinate y and the quantity t along the y-axis are found from 

(3.3) and (3.4) for I = 1/2n and will be 

Y i*’ 
- = sh Q, f C2 (b _ n)2 tan-l -&, 

1 

C 

- =c(b-u)chQD 
t 

(3.12) 

Qle should bear in mind that the longitudinal displacement w is ex- 

pressed in terms of @ in the siqle form 

b--cD 
W=-b--c, 

Note, that within the considered region of cb and V variation, that is, 

for a < ip< b, 0 < Y< 2n, the determinant of transformation A must be 

different from zero. Otherwise 0 and $ will not be single-valued functions 

of x and y. Since the determinant is 

A=$-y4t2>Q, or f > JJ. 

then from (3.3) it follows that 

c(b- a) I/clP CD - COPY > !” 

'Ihis condition will be satisfied if parameters a, b and c are 
subjected to the following limitation 

Notice that for 11 = 0, equations (3.9) and (3.10) will give 

a = a, b=fi, c=l 

Let us carry out a numerical example for 

p = 0.2, Cl = 0.4. p = 1.0 

which would illustrate the preceding discussion. Parameters a, b and c 
are obtained from solution of equations (3.9) and (3.10). They are equal 

to 
a = 0.347, b = 1.105, c = 0.889 . 

The coordinates x and y for points of inner contour are determined 

from (3.5), and the corresponding values of t and 7 at these points are 
found from (3.6). In this manner 

Y=0.000 0.314 0.628 0.942 1.257 1.57l 
3: = 1.081 1.011 0.841 0.603 0.315 0.000 
y = 0.000 0.153 0.265 0.345 0.394 0.411 
1 = 4.194 3.159 2.163 2.680 1.462 1.399 
‘: = 2.462 2.258 1.822 1.510 1.347 1.297 

‘Ihe coordinates x and y for points of outer contour are determined 
from (3.7) and the corresponding values of t and T are found from (3.8). 

Jlence, 
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Y = 0.000 0.314 0.628 0.942 1.257 1.371 
.c = 1 . ,543 1.467 1.246 0.904 0.475 0.000 
y -0.000 0.385 (1.734 1.009 1.184 1.245 
t =I 1.104 I.076 1,012 0.946 0.901 0.886 
r: r;_ I . O.j3 1.028 0.973 0.913 0.873 0.859 

‘These results make it possible to conjecture the contour forms for 

cross-sections of bounding cylinders and the character of variation in 
shear stress r along inner and outer contours. 

The values of t, r and w along the x-axis are determined from (3.111. 

?heir final values are equal to 

Analogous values of t, T and 
from (3.12). They are equal to 

$, = 0.317 0.498 
!/ -= 0.411 0.347 
t = 1.399 1.31’3 
: = 1.297 I .431 

- Ii’ = 1 .ooo 0 soi, 

fi ,630 0.801 0.953 1.105 
1 .l74 1.266 1.388 1.543 
Z.Ufl 1 . Gfii 1.344 f.104 
1 .8O.i 1.x0 1.253 1.033 
0 .6(-o I). 410 ,). 200 0.000 

W, however, along the y-axis are found 

il. ij.iO 0.801 (1.953 1.105 
9.695 0.857 1.039 1.245 
I.217 I .I08 0.996 0.886 
I.149 1.036 0.958 0.8.59 
il. 600 0.400 0.200 (1.000 

These results indicate the character of variation of shear stress T 

and longitudinal displacement w along n- and y-ax&s. 

Contours of cross-sections for bounding cylinders are shown in Fig.2. 

In the same figure, by dotted lines, are also shown 

Fig. 2. 

contours of cross-sections for ,u = 0 which are confocal ellipses. In the 
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same figure is drawn the lattice fi = constant and V = constant, which are 

constructed for various values of il, (from 0.347 to 1.105) for equal in- 
tervals of 0.152 and for various values of V (from 0.000 to 1.571), also 

for equal intervals of 0.314. 

In conclusion we note that the technique presented here makes it 

possible to investigate also other problems of longitudinal displacement 

of plastic mass between non-circular cylinders. 

Translated by V.A.V. 


